CASE STUDY

STRENGTH TAKES SUSTAINABLE BUILDING TO A NEW LEVEL

CONVENT HILL
MILWAUKEE, WISCONSIN
Cold-Formed Steel Supports Green Terraces

Around 1900, the School Sisters of Notre Dame settled on a wooded hill in Milwaukee. According to the Milwaukee Journal Sentinel, the nuns built “a little pioneer home hidden under mighty trees.”

More than a century later, greenery crowns another home built on the same hill: Convent Hill, a 10-story senior residence with roof terraces filled with daylilies, spirea, phlox, shrubs and grass.

“There are many books and articles written about the benefits of green roofs, and how they are good for the environment, but few understand the details of how to build them,” says John Matsen, P.E., Principal, Matsen Ford Design. “Most architects are probably not aware that cold-formed steel framing can support green roofs.”

NEW LEVEL OF SUSTAINABILITY

The City of Milwaukee had the Convent Hill complex built in 1959. For the present redevelopment, the city wanted to take advantage of the latest environmentally friendly building designs. The structure represents “a new level of sustainable and green technology,” states the Milwaukee Journal Sentinel. The terraces, totaling 12,000 square feet, are each supported entirely by cold-formed steel.

Masen Ford Design Associates, Waukesha, Wis., engineered the project’s cold-formed steel system, which comprises the majority of the structure’s support system.

“Structural steel beams were used at the second level for support of the load bearing walls,” Matsen says. “But the top eight floors of Convent Hill are cold-formed steel all the way.”

FIVE GARDEN TERRACES

Indeed, cold-formed steel framing is the primary load-carrying structure for the upper residential stories. Cast-in-place concrete was used for the foundation walls, lower slab and shallow footings. The main lateral resisting system is cast-in-place reinforced concrete stair and elevator cores.

The combination of concrete and some structural steel with cold-formed steel supports 120 senior apartments and five roof-top terraces each filled with a variety of greenery.

The School Sisters of Notre Dame would be proud. The little hill in Milwaukee where they had built their home remains verdant, filled with life. The owner, too, is proud of the green contribution Convent Hill makes to Milwaukee’s Park East corridor.
Milwaukee’s Convent Hill is a 10-story senior housing complex built using cold-form steel framing.

STRUCTURE

SUMMARY
Cast-in-place concrete foundation walls, lower slab and shallow footings
Cast-in-place reinforced concrete stair and elevator cores
Second floor and below: hot-rolled steel framed with post-and-beam and cold-formed steel joists
Upper eight stories: cold-formed steel framed bearing walls and joists

WALL FRAMING
Cold-formed steel — 362S162-43 to 362S200-68 (interior), 600S162-43 to 600S200-68 (exterior)
Bridging: Cold-rolled channel with clip angle
Stud panels compressed for tight seating in top and bottom track
Prefabricated on site

FLOOR JOISTS
Cold-formed steel — 1000S200-54 — at 24” o.c., 925S162-54 at corridors, fastened to pre-punched tabs on rim track
Rim track used in many locations to eliminate load-bearing headers in the stud walls
Track fastened to the sides of the wall studs with screws or welds
S162 C-deck run up to bearing walls
Bridging at 6’ to 7’ o.c. with typical solid blocking — RC furring substituted for continuous bottom flange bridging in some locations.

ROOF JOISTS
Cold-formed steel — 1200S200-54 at 24” o.c., 2x 1200S200-97 at long-spans, 925S165-43 at corridors
Screw-fastened S150 B-deck with tapered insulation and ballasted EPDM roofing
Bridging at 6’ to 7’ o.c. with typical solid blocking — RC furring substituted for continuous bottom flange bridging in some locations.

The information presented here is for illustrative purposes only. SFIA accepts no responsibility for the accuracy or completeness of the information or for loss or damage caused by any use thereof. ©2013 Steel Framing Industry Association